Semantic Linking on SpringerLink
Multiplying your research power

SpringerLink offers an exciting new service for researchers

Related Documents

Based upon a software-driven analysis of electronic documents, this service guides SpringerLink users to articles that are related to content they have already accessed. The powerful textual semantic analysis technology behind this new feature helps uncover relevant articles that may have eluded the user’s previous search efforts. Thus, the new feature ideally complements traditional finding methods such as full-text search and subject-area browsing. The Related Documents function automatically identifies and delivers ten documents with content that is contextually similar to the source document. These semantically matched documents may not be included in SpringerLink keyword search results.

Related Documents compares the entire vocabulary used in all of SpringerLink’s articles, identifies similar content and returns additional documents that match the source document. For example, articles may be related because the same experimental method was used in a different context, or because the same phenomenon was analyzed with a different experiment. By directing the researcher’s attention to relevant SpringerLink content that looks beyond blunt keywords and search terms to deeper relationships, **Related Documents** enhances and accelerates the discoverability of useful information.
SpringerLink offers an exciting new service for researchers

Ten related documents from the SpringerLink database are displayed alongside the source document, whether journal article, book chapter, Springer eReference entry or Springer Protocol. Users who possess the appropriate access rights can retrieve the full text of the related documents.

The traditional keyword search engine seeks all documents that include the query term and lists them in search results. This feature is adequate for locating articles that are highly relevant for the user’s research interest but do not contain a query term they may have been used in a previous full-text search. Since many scientific terms are used in very different contexts, keyword searches in vast databases such as SpringerLink can potentially generate very heterogeneous search results. For example, a search for the keyword “apollo” will return documents from such diverse domains as Physics and Astronomy, Life Sciences, and Humanities and Social Sciences and Law, much of which may be irrelevant to the user’s needs.

The backbone of Related Documents is its specialized software, which matches content using the principle of semantic congruence – a set of sophisticated, adaptive searching protocols that probe beyond keywords and search terms to accurately match content across disciplines and publications. This semantic linking software extracts concepts or key terms, which can be composed of multiple words. The key terms are weighted according to frequency of occurrence and placement in the article, and verified against a database.

The result is a semantic “fingerprint” that clearly identifies each document on SpringerLink. This enables the software to match the content of the source article with the entire content of SpringerLink and to display the ten most related documents.

Benefits

- Semantic linking software retrieves 10 documents ranked by relevance: papers, journal articles, eBook Chapters, Reference Works entries, Springer Protocols and more
- In-depth results, spanning the complete range of SpringerLink content
- Goes beyond keyword matching to return highly focused documents with every search
- Searches produce a higher yield of useful information
- Recommendations help to place a user’s research into a wider context
- Helps to identify other fields where a similar research method is employed

Visit springer.com/librarians to find out more about SpringerLink or to find your local Springer representative