Peer-to-Peer Networking and Applications

Call for Papers

Special issue on Networked Cyber-Physical Systems: Optimization Theory and Applications

Scope:
Cyber-Physical Systems (CPSs) represent a bold new generation of systems that integrate computation and communication capabilities with the dynamics of physical and engineering systems. A critically essential charismatic of modern CPSs is that such systems are actually networked via the Internet, cloud, or special logical or physical networks including but not limited to industrial 4.0, wireless sensor networks, social networks, to name a few.

In recent years, distributed and large-scale monitoring and distributed control applications have awaken a growing interest in networked CPSs, and considerable research efforts have been dedicated to analysis and control for networked CPSs. However, there still exist many open problems regarding theory and practical applications in the area of networked CPSs. For example, it is an imperative work to formulate hybrid model for networked CPSs based on P2P and client-server models. Another fundamental task is to construct new effective metrics to synthesize the communication, computing and control requirements. Due to the limited resources, the system operators also need to design optimal static/dynamic resources allocations schemes. Different from traditional resources allocation methods, which only consider the resource dispatch from one aspect, new allocation approaches should trade off the communication, computing and control requirements. CPSs are often confronted with data security and privacy issues. Since the attackers are becoming more intelligent, traditional P2P secure communication strategies are not sufficient for the security and privacy requirement. It is very urgent to design more resilient and secure networked CPSs against potential adversaries. In addition, how to promote networked CPSs theory to industrial applications, including smart grids, flexible manufacturing systems, vehicle systems, and intelligent robots, is also of great concern. These call for an urgent quest to explore and investigate the new challenging issues in networked CPSs. In this potential topic, we are applying for recent contributions that focus on theoretical analysis as well as industrial applications on networked CPSs from a variety of perspectives.

This special issue will seek latest significant contributions on decentralized/distributed optimization approaches for networked CPSs in both theoretical and industrial applications, and will try to identify new research issues, opportunities and directions in the emerging theory and technologies.

Topics of primary interest include, but are not limited to:
- Nondeterministic switching systems model of networked CPSs
- Markov stochastic model of networked CPSs
- Optimization and distributed control of mobile P2P networks
- Optimization and distributed control of M2M communications
- Optimization and distributed control of networked CPSs
- Energy-efficient communication/computing/control schemes
- Privacy and security preserving protocol design for networked CPSs
- Secure P2P communication for networked CPSs
- Cooperation in networked CPSs
- Parallel computing in networked CPSs
- Decentralized/distributed design in networked CPSs
- Remote state estimation for networked CPSs
- Stochastic optimal control for networked CPSs
- Industrial applications of networked CPSs
Tentative Schedule
Manuscript Due: Nov. 30, 2018
First Notification: Dec. 30, 2018
Revised version: Feb. 10, 2019
Final notification: Mar. 10, 2019
Publication Date: TBD

Manuscript Submission
The authors should visit www.springer.com/12083 for information on paper submission. Prospective authors should submit an electronic copy of their complete manuscript through the Editorial Manager system at https://www.editorialmanager.com/ppna/default.aspx using the article type: “SI: Networked Cyber-Physical Systems.” Manuscripts will be peer reviewed according to the standard of Peer-to-Peer Networking and Applications.

Guest Editors:

Heng Zhang
Huaihai Institute of Technology, China (Email: ezhangheng@gmail.com)

Zhiguo Shi
Zhejiang University, China (Email: shizg@zju.edu.cn)

Mohammed Chadli
University of Picardie Jules Verne, France (Email: mchadli@u-picardie.fr)

Yanzheng Zhu
University of Western Sydney, Australia (Email: yanzhengzhu1986@gmail.com)

Zhaojian Li
Michigan State University, USA (Email: lizhaoj1@egr.msu.edu)

Heng Zhang received the Ph.D. degree in control science and engineering from Zhejiang University in 2015. He was a research fellow at Western Sydney University in 2017. Now he is an associate professor at the School of Science, Huaihai Institute of Technology, Jiangsu, China. He is an editor board member of several academic journals, including IET Wireless Sensor Systems, EURASIP Journal on Wireless Communications and Networking, etc. He is also an active reviewer of several top journals, including IEEE Transactions on Automatic Control, Automatica, IEEE Transactions on Control of Network Systems, IEEE Transactions on Information Forensics & Security, and IEEE Transactions on Wireless Communications, etc. His research interests include security and privacy in cyber-physical systems, networked control systems, Internet-of-Things, wireless sensor networks, etc.

Zhiguo Shi received the B.S. and Ph.D. degrees in electronic engineering from Zhejiang University, Hangzhou, China, in 2001 and 2006, respectively. Since 2006, he has been a Faculty Member with the Department of Information and Electronic Engineering, Zhejiang University, where he is currently a Full Professor. From 2011 to 2013, he visited the Broadband
Communications Research Group, University of Waterloo, Waterloo, ON, Canada. His current research interests include signal and data processing, and smart grid communication and network. He is an Editor for the IEEE NETWORK, KSII Transactions on Internet and Information Systems, and IET Communications. He was a recipient of the Best Paper Award from the IEEE Wireless Communications and Networking Conference 2013, Shanghai, China, the IEEE/CIC International Conference on Communications in China 2013, Xian, China, the IEEE Wireless Communications and Signal Processing 2012, Huangshan, China, and the Scientific and Technological Award of Zhejiang Province, China, in 2012.

Mohammed Chadli received the M.Sc. from “Ecole Normale Sup” Mohammeda-Morocco (1993) and (DEA) from Engineering School INSA-Lyon (1999), the Ph.D. thesis from the CRAN-Nancy France in 2002 and his Habilitation in 2011 at the University of Picardie Jules Verne (UPJV) in Amiens, France. From 1999 to 2004, he was an Assistant Prof at University of Lorraine (CRAN-Institut National Polytechnique de Lorraine). Since 2004, he has been Associate Professor at the UPJV-MIS France. He was a visiting professorship at the Technical University of Ostrava-Czech Rep., University of Agder-Norway and University of Shanghai-Chinn. His research interests include fuzzy/LPV systems, singular systems, robust control, fault detection and isolation (FDI), fault tolerant control (FTC) via LMI and SOS optimization techniques, and their applications (automotive control, renewable energy,...). He is author/co-author of 4 books, book chapters and numerous articles published in international journals and conferences. Dr. Chadli is a senior member of IEEE, he has actively served in the editorial board of a number of journals, including IEEE Transactions on Fuzzy Systems, IEEE/CAA Automatica Sinica, Journal of Franklin Institute, IET Control Theory and Applications, Asian Journal of Control, ... and was a Guest Editor for Special Issues in international journals.

Yanzheng Zhu received the Ph.D degree in control science and engineering from Harbin Institute of Technology, Harbin, China, in 2015. From Sep. 2013 to Apr. 2015, he was a visiting scholar with the Department of Electrical and Computer Engineering, Ohio State University, Columbus, OH, USA. Currently he is a research fellow in Western Sydney University, NSW Australia. He has published 2 co-authored books in Springer and more than 40 papers in international journals and conferences with 850+ Google scholar citations. His current research interests focus mainly on nondeterministic and stochastic switched systems, analysis and synthesis of networked control systems, resilient control of cyber-physical systems, neural network based control and their industrial applications.

Zhaojian Li is an Assistant Professor in the Department of Mechanical Engineering at Michigan State University. He obtained M.S. (2013) and Ph.D. (2015) in Aerospace Engineering (flight dynamics and control) at the University of Michigan, Ann Arbor. As an undergraduate, Dr. Li studied at Nanjing University of Aeronautics and Astronautics, Department of Civil Aviation, in China. Dr. Li worked as a research engineer at General Motors from January 2016 to July 2017. His research interest includes Connected and Automated Vehicles, Intelligent Transportation Systems, and Reinforcement Learning. Dr. Li was a recipient of the National Scholarship from China.