











































































































































































































































































































3 Dynamics of Rigid Bodies @

Then, conservation of energy leads to .
202 2 b\
Cos Y1 = 1-— lO 27l2 . .\
4gl 242
AN

b) The loss of energy AFE is given by the diﬁerence@“ o
kinetic energies before and after the blocking:

Opwi Oaw? mriwd m rtw? (D

_ _ _ _m. 2 2
AE = — 2 4 7 +<)(9\2 +2
~omrtwy P (D

2 r24212 § Q

/)f
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Example 3.41 A homogeneous an-

0 M,

gled bar of mass m is attached to a %‘é ’
shaft with negligible mass. The ro-

. . . 21
tation of the system is driven by the m 5 1
moment M. n 42

Determine the angular accelera- 21 o
tion and the support reactions.

7

Solution The following moments
and products of inertia with respect ﬁ
to the body-fixed coordinate system
&,m, ¢ are needed: 46\‘
2 @) m ..., 20, '
Of = - — 20)"=—ml
m _ 1 1
=——2 - =—-mil?
Occ=rgg=—gm. |
B
®n< - 0 . ¢ -

With the moments

Me =2iB, —2IA M, = 2l0A¢ = 2{Be ;. M,

mno

the principle of angular momentum in component

e mil?

¢ 2l(Bn—A,7):—o'JT — Bn_An:
~ mi?

n.: 21(145 = BE) = —sz - Ag — Bg =
N 9

¢ My = 0 2n W=

Fig. 364
Mg
> ‘477
n
C,
L&
\ é.
/B”
= MO

form yields

miw
——
mlw?
6 )
9M,
20mi2
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In order to be able to calculate the support reactions, we now
have to formulate the principle of linear momentum. The eenter
of mass moves on a circle. With the distance ¢ = 41/3*from’ the
axis of rotation, we obtain the components of its acceleration as

Qce = —&cw? and acy = Ecw. Thus,
—mécw? = A¢ + Be | méew = A, + B,
which leads to
3 27 My
Ae = —= miw? Ay ==—==0
I Sl "7 80 1
7 21 M,
Be = —— mlw? B, =" —.
£ M T80 1
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Example 3.42 A shaft (principal moments of inertia ©1, G, ©3)
rotates with constant angular velocity wg about its longitudinal
axis. This axis undergoes a rotation
a(t) about the z-axis of the fixed in
space system z, y, 2.

Calculate the moment which is
exerted by the bearings on the shaft
for

a) uniform rotation a = Q,
b) harmonic rotation o = v sin Q. Fig. 3.65

Solution We solve the problem with the aid of Euler’s equations
©1w1 — (02 — O3)wows = M,
O2wr — (O3 — O1)wswy = My,
O3ws3 — (01 — Oz)wiws = M.

With

we obtain
M1:0, MQZ*(®3*@1)W()@, Mgi@gd

where «(t) represents an arbitrary rotation;.
a) In the special case of a uniform.rotation o = Qt we get

a=Q, a="0.
Thus,

M1:M3:0, M21(617®3)WOQ.
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b) In the case of a harmonic rotation a = ag sin Qt we find
a=opQcosQt, &= —aQ?sint
and

M1 = 0, M2 = (@1 — @3)(4)090(0 COSQt,

Mg = 7@392040 sin 2t .

Note: Only a moment about the 2-axis acts in case a). It isicaused
by two opposite support reactions of equal magnitude (= couple)
in the 3- and z-directions, respectively.
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Example 3.43 A pin-supported rigid beam

(mass m, length 1) is initially at rest. At I

time tg = 0 it starts to rotate due to an

applied constant moment M. Z
Determine the stress resultants (inter- 7, ﬁ

nal forces and moments) as functions of

for t > tg. Neglect gravitational effects. Fig. 3.66

Solution First we determine the angular acceleration and the an-
gular velocity of the beam. The principle of ‘angular momentum
with respect to A yields

“y . . M
A: Oap=DM — p = .,
O4
Integration with the initial condition ¢(0) = O gives
My
O(t) = —1t
0 =7g,

Now we cut the beam at an arbitrary position and introduce the
bending moment M and the shear force/V into the free-body dia-
gram (the normal force N will'be considered later). The principle
of angular momentum (with-respect to the center of mass C') and
the principle of linear momentum (in-the y-direction) yield

A

C: Ofp=—-Mz)—V(r)—=

N mie=Vix).

The acceleration ¢ follows from the ki=
nematics (circular motion):

. A )+ 28
o =re9= —

Thus, with'm = (I'— %)m and ©4 = mT we obtain the shear

force;
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- 1
Introduction of the moment of inertia ©5 = - m (I — x)? leads
to the bending moment:
l
M(z)=-V———-0s¢
3 T\ 2 T ml? x\3. My
= My (1-2) (143 B (p )R
4 0( z) (Jrl) 12( l) 04
2

The normal force can be determined from the equation of motion
in the z-direction: m

S mie = ~N() ¥
y 1o}
where #n = —7ra ¢? is the centripetal T
acceleration. This leads to o =2 +x)
N(z) =mrs ¢

B r. o x+1 [ My 2
=m-7)= (eAt)

Note that the normal:force increases with time ¢ in contrast to
the bending moment-and the shear force.
The stress resultant diagrams.are presented below.

M(z)

N(z)

9 N32
2 mi?
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Example 3.44 The angled member )
(weight W = mg) in Fig. 3.67 con- l >
sists of two homogeneous bars.
Derive the equation of motion
for the member’s center of mass. 21

Solution First, we locate the center T
of mass of the angled member. With
the coordinate system as shown in
the figure we obtain

m
32 _1
re= m 6’
m 2m
— 21+ —1
3773 4,
Yc = =
m 3

Thus, the distance of the center of
mass from point A is given by

65
a:\/yg—i—x%:%l.

The member rotates about afixed axisthat passes through A. We
introduce the angle<p and apply the principle of angular momen-

tum:

Ou =My
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We measure ¢ from the position of equilibrium (C' is vertically
below A). With the mass moment of inertia

m [ 12 A 2 (20 T
®A5{5+ (21) +<§) }+—m——ml

3 3 3
we obtain
) 7 V65
A ngng:—mgasintp — gb—l—j%sin(p:O.

Note: In the case of small oscillations (¢ &'l sin @ me-i) the
equation of motion reduces to the differential equation
V65 g

L Vg
VI g

for harmonic vibrations.
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Example 3.45 A bowling ball (mass m) is placed on a rough surface
(coefficient  of kinetic friction
= 0.3) with velocity vg = 5 m/s
(Fig. 3.68). Initially, the ball does
not rotate.
What is the position z, of the %
ball when it stops sliding? Calculate /< 1L
the corresponding velocity v;..

Fig.3.68

Solution When the ball is placed on the rough surfaceit slides.

=

The friction force R is opposed“to the“direction of.the motion.
Thus, the equations of motion.are given by

—: mi=-R,

T 0=N—-—mg~— N =img,
~

C: Ocw=rR:

With ©¢ = 2mr?/5 and the law of friction R = uN = pmyg, the
first and the thirdiequation lead to (initial conditions v(t = 0) =
v, 2(t = 0) =0, w(t = 0)=0)

)
_ Bug

1
v =1a="vg -~ ugt, x=vot — = pgt?, w=
2 2r
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The ball rolls without sliding if the velocity of its center of r@

is given by . b\
V=Tw . A
L 4
O

This condition leads to the corresponding time t,.:

S
o
|
=
Q
~
Il
DO |
=
s}
~
1
I
‘ )
S
[=)
Il
o
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E3.46 Example 3.46 The double pendulum in
Fig. 3.69 consists of two identical ho- Kty
mogeneous bars (each mass m, length I
[). It is struck by a linear impulse F at
point D.

Determine the distance d of point D
from the lower end of the pendulum so F

that the angular velocity ws of the lower T’ b
bar is zero immediately after the im- d
L]

pact. Calculate the impulsive forces at |
A and B. Fig. 3.60

Solution We separate the two bars and
draw the free-body diagram. Note that

there is no linear impulse in the vertical ava
direction. The bars are at rest before the T s
impact. The principles of linear and an- i g
gular impulse and momentum are-given ¢
by & s
A _ £ - < 5
O A: O =18, %th
O — muvy = ﬁ — B R \1 Gy
d— sl
b I~ N~
Cg @Czwg——B—(d——)F O
2 2
where
1 1
O4 = gml2, Ocy= Eml2

We desire the motion'of bar [0 to be a translation. Therefore,

Wy =0, vy =l .
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This leads to - @

F
g
m

] W

Wy =

=

3

=
no

SO . F \2 %
—: muvy=A+B — A=§. )




SH y «
o ;
%"

mo\ﬁ
SPAY

\\m\s

&y 0>
\ v/
&@b@\m\@@@\? OJQ

N6 %

s, 5
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Example 4.8 A homogeneous disk (mass m, radius r) rolls without

slipping on a rough surface (Fig. 4.9). Its center of mass.C is

connected with the wall by a spring (spring constant k).
Derive the equation of motion

using

a) Newton’s 2nd Law, k

b) dynamic equilibrium conditions.

Fig. 4.9

Solution a) The free-body diagram shows the forces that act on
the disk.

X

~—

o)

— [T

We use the coordinates ' and . Then theprinciples of linear
and angular momentum-yield

—: mi.=-F-H,

t:+ 0=N-W 1—» N=W,

A
C: Oc¢cp=rH where -Og =mr?/2.

In addition; we. have the'kinematic relation
Te =P — Td=re,
and the relation

F=kx. =~ F=krp
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for the force F' in the spring. Solving these equations for the angle
@ yields
2k
¢4+ w?o=0 where w?=_-"".
b) If we apply the dynamic equilibrium conditions; ,.the inertial
force ma,. and the pseudo moment ©c¢ (both acting in the ne-
gative coordinate directions) have to be drawn into the free-body

diagram.
Ocp

Dynamic moment equilibrium about point B then yields

m . ..
B: Ocp+rmi.+rF =40.

If we introduce the kinematic relation (see a)), the force F' = kry
and O¢ = mr?/2 we again.obtain
2c
p+wlo=0, wis_—.

Note that we may choose point. B to ‘be the reference point for
the moment equilibrium. This.is-advantageous since then the lever
arm of the unknown force. of static friction H is zero. The mass
moment of inertia must be.©¢ (not Opg!).
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Example 4.9 A cylinder (mass
m, radius r) rolls without slip-
ping on a circular path (radius
R); see Fig. 4.10.

Derive the equation of moti-
on using dynamic equilibrium

conditions.

Solution We isolate the cylinder and introduce the coordinates
¢ and 9 (angle of rotation of the cylinder). With. the tangential
acceleration a; = (R — r)¢ (in the positive ¢-direction) of the
center of mass C' and the normal accelerationya, = (R — 7)?
(directed towards the center of thé cireular path), the inertial
forces ma; (opposite to a;) and may, (eppositeto a,,) can'be drawn

on the free-body diagram.

The pseudo moment @cd} acts in the negative ¥-direction. Mo-
ment equilibrium about point-B yields the equation of motion:

~ .
B: Oc¢t +m(R=r)p & mgrsing=0 where Oc =mr?/2.

The system has one degree of freedom. Therefore a relation exists
between the two coordinates:

vo =(R-r)p =rf — d=(R/r—1)¢.
This leads to
ey

7gsin<p:0.
3(R —x)

Note that,the moment equilibrium may be established with re-
spect to point B. This is advantageous since the lever arms of
the unknown force of static friction H and of the inertial force
m(R — r)$? are zero. The mass moment of inertia, however, has
to be taken with respect to the center of mass C.
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Example 4.10 Two blocks of weights
Wi = mig and Wy = myg are
suspended by a pin-supported ro-
pe drum (moment of inertia ©4) as
shown in Fig. 4.11.

Determine the angular accelerati-
on of the drum and the force in ro-
pe O using dynamic equilibrium con-
ditions. Neglect the mass of the ro-
pes.

Solution  We first introduce the co-
ordinates x; and x2 describing the
motion of the blocks. The inerti-
al forces —m;Z; point in the ne-
gative x;-directions (see the free-
body diagram). In addition, we ha~

ve to consider the pseudo moment 1
—©4¢ which acts in the negative.p- ! I * *
direction. Moment equilibrium-about i g
point A then yields *ml:i;'l * MoTo
~
A: —rlml(g—l—jél)—l—rgmg(g—ftg)—@Ac,b:O.

Using the kinematic relations
T =rme — i‘llegb,
T2 = T2 — .ifg — 7“2(‘5

we obtain the angular acceleration of the drum:

oMy — 1M1
2 2 .
Mt r5mo4 Oy

(‘b:

E4.10
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In order to determine the force in rope O we cut the rope. Force
equilibrium (see the free-body diagram) yields

Sh
T S1—mig—mii =0 1:11 0
or *Iﬂ,lg
/o) .
S1 =mi(g+r1$) =mig 7“22(r1 T ra)mz 1 O4 f’mm

rimy + r%mg + 0Oy

Note: For romg > rymy the drum rotates clockwise, for roms <
rimy it rotates counterclockwise. In the special casergms = rimy

the system is in static equilibrium (¢ =-0).
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Example 4.11 An angled arm (mass | b |
m) rotates with constant angular ve-
locity € about point 0 (Fig. 4.12).
Calculate the bending moment,
shear force and normal force as func-

s ]

tions of position using dynamic equi-
librium conditions. Fig. 4.12

Solution We introduce two coordinate systems+a;,"z;. Then, we
make a cut at the arbitrary position x;. Theracceleration.of the
mass element dm at the position s (distance from the left end of
the arm) is given by a, = rQ? (pointing .towards point 0; note
that a; = 0). Therefore, this element is subjected to the inertial
force dmrQ? (see the free-body diagram).

0)

’1‘\}”(1\2 )

22

—
V(zg = 0)

dnifa—5)0?

/"
\#’J[
N
S
With
dm = a”jbds = lud3,

where u = m/(a+b)/is the.mass per unit length, and with the
geometrical relations

cosp = (b=s)/r, (sinp =a/r

we can determine the stress resultants through integration (note
that M= V).
Normal force (0 <"x; < b):

N(x1) :/TQ2cosgodm=/ Q2 (b — s)puds
0

=u?bs — 22|50 —  N(x1) = pQ*(bxy — 23/2) .

Shear force (0 < 1 < b):

3
Vizr) = /7’Q2 singadm:/ Q?apds  —  V(ry) = pQ3ax; .
0

E4.11
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Bending moment (0 < x; < b):

M(x1) = /OZI V(s)ds — M(x1) = puQ2azx?/2.

The matching conditions at the corner (z1 = b, x93 =0) are given
by

No = N(z2 =0) =V (z; =b) = uQ?ab ,
Vo =V(ze =0)=—N(z; =b) = —uQ?b2/2,
My = M(z2 = 0) = M(z1 = b) = uQ2ab?/2 .

Now we make a cut at the position xo. The mass element dm at
the position s is subjected to the inertial force dm(a — s)Q2. This
leads to the following stress resultants:

Normal force, shear force, bending moment (0'< z2 < a):

N(xz2) = No + [y uQ*(a = s)ds

—  N(xg) = uQ?(ab + amy — 237/2).,

V(ZL'Q) = V() — V(.Z'Q) = 7#921)2/2 N

M(z2) = Mo+ x2Vg «—  M(x2) = uQ%b*(a — 22)/2 .

N mwy o .

® Ng M Vo ® HMb

i g
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Example 4.12 A wheel (weight W1 = mg, moment of inertia ©4) E4.12
on an inclined plane is connected to a
block (weight W5 = mag) by a rope
which is guided over an ideal pulley
(Fig. 4.13). The wheel rolls on the pla-
ne without slipping.

Determine the acceleration of the
block applying d’Alembert’s principle.
Neglect the masses of the rope and the

pulley. Figya.13

Solution  Since the constraint forces (foreevin the rope, static
friction force) need not be determined, it is-advantageous to apply
d’Alembert’s principle. The motion
is described by the coordinates x;
and . The inertial forces m;%; and
the pseudo moment © 4¢ (acting in T\l/( /@A %
the directions opposite to the chosen
positive coordinate directions) are
shown in the figure. D’Alembert’s
principle (principle of virtual work) ?mﬂ.ﬁ)
requires that the virtual-work of all .

forces vanishes:

U +6Ur =0
— —m1E10x1 — mygsin adxry — O 4P mogdrs — MoZadre =0 .
With the kinematic relations
0x1 = dxg = 1rdp = dx
T =T =TrY==o —
Zi'l = Zi'Q = T@ = ZL'
we obtain

L . O4 .. .
—E — mygsina — —— & + mag — mai ox =0.
T

Since dx #/0, the expression in the brackets must vanish. Thus,

Mo — My Sin «

O
my +mg + —
r

3'6:3'&2:9

Note that & < 0 for mqsina > msy. In this case, the wheel rolls
down the inclined plane.
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E4.13 Example 4.13 Two drums are connected by a rope and carry/blocks

of weights m1 g and ms g

(S} (S}
(Fig. 4.14). Drum O is dri- 4 b

ven by the moment Mj. Ty

Determine the accele-
ration of block O using B
d’Alembert’s  principle.
Neglect the mass of the Moy
ropes.

©)
Fig.4.14

Solution We introduce the
inertial forces m;Z; and
the pseudo moments © 441,
Opys. They act in the
directions opposite to the
chosen positive coordina-
te directions. D’Alembert’s
principle requires

mag *
Modn *

SU +0Ur =0,

which leads to

—m1(g + &1)dxz1 + mo(g — @2)0xo

+M05§01 — @Agbl(sgﬁl — 633525502 =0 .

With the kinematic relations

1 =Tr1p1 S . T1
Y1 =2 =—, TG = —T2,
T2 T2
T2 =122 B (S.Tg T1
(5(,01 = (S(pg = —, (S.Tl = —(S.Tg
T2 T2

$1 = $2



we obtain - @
{_m1(9+%@>:—;+m2(g—o‘éz) 'A\b\}

Thus, the acceleration of block O is

a
1_m1r1+ My %

s Q

mo \To ?’I’LQT% marsy




E4.14

124 4 Principles of Mechanics

Example 4.14 The system shown in Fig. 4.15 consists of a block
(mass M), a homogeneous disk (mass m, radius r) and two springs
(spring constant k). The block moves on a frictionless.surface; the
disk rolls without slipping m

on the block. A force F(t) M

acts on the block. ¥ i F.<t)
Derive the equations of mo- \
tion using Lagrange’s for- LY.
malism. Fig 4.15

Solution The system has x
two degrees of freedom. We = ==

choose the displacement x % F(t)
of the block and the angle _AAA A,_| —
of rotation ¢ of the disk to =
be the generalized coordinates.

The two springs are unstressedfor x = 0.and ¢ =0. The kinetic
energy and the potential energy of the springs, respectively, are

T =Mi?/24 Ocy? /24 mvE /2,
V = ka?/2 + k(re)?/2.
With ©¢ = m#r?/2 and the kinematic relation
v =3 — @
we obtain the liagrangian
L =T-V
— L =Mi*/2+mr?? /4 +m(i —rp)? )2 — ka2 /2 — kr?p? /2.

Since the force F'(t)'is not given from a potential, we have to apply
the Lagrangian equations in the form

d~(0OL OL d [OL oL
)= (5] =0,
dt \ 0z ox dt \ 9¢ e
The generalized forces @, and @, follow from the virtual work
0U of the.force F(t):

SU = Quoz + Quip = F(t)ox  — Qu=F(t), Qp=0.
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To set up the equations of motion, the following derivatives

have to be calculated: (
oL
oL _ ... o |
ER T +m(E—re), )
d /0L
d (OLN _ s W
" <8x> &+ m(E—rg),
= = /2 — (i~ )
— =mr —mr(z —r
PR ¥ P)
d (0L ,
d oLy _ /9 W
o <8gb) mrég/ mr(E —rg) ,
oL oL ,
% = —I{/’.’I] y % = —kr @ .

Thus, we obtain

(M +m)i —mrd+ ke = F(t)

3
—mI + §mr§b+kzrtp =0.




126 4 Principles of Mechanics

E4.15 Example 4.15 Fig. 4.16 shows two blocks of mass m; and ims
which can glide on a friction-
less surface. They are cou-

pled by springs (stiffnesses ky ks ks
kl, kQ, /{33) my Mo %
Derive the equations of
Fig. 4:16

motion using the Lagrange
formalism.
Solution The system is conservative; it has twoe.degrees of freedom.
We introduce the two coordinates x; and xo. which deseribe the
positions of the two blocks.
They are measured from the N )
equilibrium positions of the — 5
blocks. The kinetic and the a"‘/\/k\l/\"l — |-'\/£€/3\/\/-| p— W
potential energy, respective- 4
ly, are given by

1

.92 1 .92
T = PHRES + 5243

1 1 1
V= §k1$% + §k21‘§ + §k3($2 — .T1)2 .
Thus, the Lagrangian of the,system is

1 1 1 1 1
L=T-V = §m1$% + —mgig 7 5]61,%% — 5]{521‘3 — —k3($2 — .T1)2

2 2

To set up the Lagrange equations

d /0L oL d /0L oL

(o) - 2o, —(£5) - = =0

de 8951 6:61 dt 61}2 81'2
the following.derivatives must be calculated:
oL d /0L oL
oL _ ; 4oLy _ oL _ 2 B
9is MIELT ((%1) miTy , B 171 + k3(w2 — 21)
oL d oL oL
— = i — =) = mai — = —kozo — k — .
Diry moXxsy , dt (&iz) maxs , D 2L2 3(302 961)
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Hence, we obtain

mid1 + kix1 —ks(ze —21) =0
= mydy + (k1 + k3)xy — ksza =0,

mads + koxo + kz(x2 —21) =0
— Moo + (kg + kg)l‘g —ksx1 =0.

Note: The two coupled differential equations deseribe the'coupled
free vibrations of the two blocks. In the special case ofk3 =0 the
system is decoupled and we obtain two independent equations of
motion for two systems, each with one degree of freedom.
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Example 4.16 Two simple pen-
dulums (each mass m, length
[) are connected by a spring
(spring constant k, unstretched
length b) as shown in Fig. 4.17.

Derive the equations of mo-
tion using the Lagrange forma-
lism.

Fig. 4.17

Solution The system has two
degrees of freedom. We choose
the generalized coordinates ¢
and @9 as shown in the figure.
With the kinetic and the poten-
tial energy, respectively,

! N N
T =ml*(p1 — 92)? /2 + ml2(1 + 92)3/2 | ' ) /
- T =mH+ @3) " v/

V = —mgl cos(p1 —~pa) — mglcos(p1 +@3).+ k(21 sin o — b)?/2

—  Vi= =2mgl cosp; cos o+ k(21 sin o — b)?/2
(zero level: point 0.and unstressed spring)the Lagrangian becomes
L=T-V

— L =ml?(p? +$3) + 2mgl cos 1 cos o — k(21 sin s — b)%/2 .
To set up the Lagrange equations

L e S (3 I
dt 8901 8@1 - dt (9(,02 (9(,02 N
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the following derivatives are needed:

oL d /0L

— =2ml? — | =— | =2mi%s

oo T @ (3%) e
oL .

—— = —2myglsin p; cos s ,

dp1

oL d /0L

T omi%gy, — (=) = 2mi2g

0p T @ <3¢2> e
oL . .

o = —2mgl cos 1 sin o — k(21 sin o — b)2leos o .
P2

This leads to the equations of motion:

1Y + gsinpy cospa =0,

ml@a + mg cos @1 sin s + k(20 sin g — b) cosps =0 .
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Example 4.17 A disk (weight mag,
moment of inertia ©3) glides along
a frictionless homogeneous bar of
weight myg (Fig. 4.18).

Find the equations of motion
using the Lagrange formalism.

Solution The system is conservative;
it has two degrees of freedom. Its po-
sition is uniquely determined by the Y weosp ?
distance z of point C from pin 0 and
by the angle ¢ (generalized coordina~
tes). With the kinetic and the poten-
tial energy, respectively,

T %(méﬁ)sf n {%mg[(xsb)Q + 33 ¢ %@2(@%}
_ l[mllQ

21 3

1
+ moz? + @2} o2+ §m2i2 ,
l l
V= fmlgi COS Y ="M gx COSP = — [m1§ e mgz}gcoscp

(zero level at 0) and the Lagrangian-L =T — V, we can write
down the Lagrange equations

d /0L aL d /0L oL
400 - L0, O o
dt \ oy O dt'\dzx or

To this end the following derivatives are needed:
oL myl? ) ) oL l .
8_<,b_< 3 + mox +®2)<p, a—w——(m1§+m2x)gsm<p,
d aL m1l2 2 . .. aL o .
a(%) = < 3 + mox +@2)<p+2m2z:c<p, o5 = Mt
< (3_L) i OL _ pw® +
3 \ gz [, 5 — M2%¥" +mageosy.

This leads to the coupled equations of motion:

12 l
<m§ + moz? + @2)55 + 2mozxp + <m1§ + m2z>gsing0 =0,

Mod — maxp? —maogcosp =0 — & —axp? —gcosp=0.
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Example 4.18 A thin half-cylindri- E4.18
cal shell of weight W = mg rolls m
without sliding on a flat surface E
(Fig. 4.19).
Derive the equation of motion - o ]

using the Lagrange formalism. Fig.4.19 '

Solution The system is conservative;
it has one degree of freedom. We in-
troduce the coordinate ¢ as shown
in the figure. With the distance a =
2r/m of the center of mass C' from
the center M of the shell we have

Oc = Oy —a’>m =r’m—a’m

= (1 —4/7%mr*

Te =TPY —asing — Te =T — aP€os p ,
Ye = A Cos — Yo =.=apsin g «

Thus, the potential energy V, the kinetic energy 7', the Lagrangian
and the pertinent derivatives are

2
V =mga(l — ¢osp) = —mygr(l — cosp) ,
T

1 (,2 ,2) 1@ 5 1 2,2{(1 2 )2
' = —m(za4 + — =—m — — CoS
) cT Ye 2 cy 5 T Y = ¥

2 2 4 2
+(— sincp) £ (1 . —2” & mr2<,b2<1 - — coscp) ,
s T ™

L=T<V = mr[me(l - %cosap) — %g(l —COS@)} )

g—i = mr[Qrgb(l — %coscp)} ,
L s Zeme) 4 drgrand].
g_i " mr{%?‘tf sin — %gsingo} .



&
IS
Q

&
kX
S

O
gsincp=0. @
"&
é?
g
O <
S
%)

ciples of Mechanics
oL

dp

6L)

¢

@(m — 2cos ) + ¢? sinp +

il
t
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Example 4.19 A block (mass my)
can move horizontally on a smooth
surface (Fig. 4.20). A simple pendu-
lum (mass mg) is connected to the
block by a pin.

Find the equations of motion
using the Lagrange formalism.

Solution The system is conserva-
tive; it has two degrees of free-
dom. We use the generalized coor-
dinates x and ¢ as shown in the
figure. With the zero-level of the
potential of the force msg chosen
at the height of the mass my, we
have

V = —moglcosyp,

4 Principles of Mechanics 133

E4.19
my
N
A
l
L]
14
mao
Fig. 4.20
— o —
ny T
~
lcosp
mo -
2

[sing

1 1
T =-mi’® + §m2[(5c + I cos p)24 (Ipsin )’ ,

2

1 1
L=T-V= §(m1 + M) Fmalip cos @ + §m212gb2 + maglcosy .

Introduction of the derivatives

oL . 5. oL J) . .

— =malcosp +mal p, — = —mplr@sinp — moglsin g,
op dp

d /0L

X <%) = molicos'p — mali sin o+ mal’

a—L*( +m2)E + maly cos a—L*O

8:_6—7711 mo)x matp @, 8:67 s

d /0L

T <%) =.(my +Mg)Z + malP cos ¢ — malp? sin @
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into the Lagrange equations

0,

Zcosp+ 1P+ gsing

my + ms)E + mald cos o — mald? sin
( ) Pcosyp ¢~ singp

=0
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Example 5.11 The system in Fig 5.30

consists of three bars and a beam EA EA T
(with negligible masses) and a block EA l
(mass m). EI ¢

Determine the circular frequency 7 |:| — % X

of the free vertical vibrations. . i

Fig"5.30

Solution The system consisting of
the truss and the beam is equiva- Fp=1
lent to a system consisting of two ‘

springs in parallel (both springs A ) %
undergo the same elongation when \ -

the block is displaced). To deter-
mine the spring constant kp of the
beam, we subject the beam to the
force F'g = 1 which acts at the
location of the block. This «force
produces the deflection (see Engi-
neering Mechanics 2: Mechanics of
Materials, Table 4.3)

1- (207
48F1

Thus, the spring constant is given by

L _ 1 _M8El_GEI
BT wp T 203 T B

wp =

In order to find the spring eonstant kr of the truss, we apply the
force Frp =/Trat bar O=This force causes the displacement (see
Engineering Mechanies 2: Mechanics of Materials, Section 6.3)

Sz,
’LUT:ZEA.
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_ 1
S =1, ;%:Sy:*T@, =1, ly = l3.=/21

we obtain
11, V212 B l
wT*ﬂ{l ~l+2'<7) \/51}—(1+\/§)ﬂ
L o I EA
TTwr T (V2

Now, we replace the two springs in parallel by an'equivalent single
spring. Its spring constant k* is given by

6BI  _ EA
B a+V2)I

Thus, the eigenfrequency is

[E* 1 |1 EAI?
=\/—= -4/ —|(6E] +—+——=).
“ m l\/ml(G + 1+\/§)

k*=kp+kr =
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Example 5.12 The system in Fig. 5.31 consists
of a homogeneous drum (mass M, radius r), a
block (mass m), a spring (spring constant k)
and a string (with negligible mass). The sup-
port of the drum is frictionless. Assume that
there is no slip between the string and the
drum.
Determine the natural frequency of the sys- f

tem.

Solution We first draw the free-body dia-
gram. The position of the block is given by
the coordinate x, measured from the posi-
tion with an unstrechted spring. Next; we

write down the equations of motion'for the g é
block
Sg S]
b1 mi=mg-—5
Sa Sh
and for the drum
S 4
B: Mr°p/2 = 5{r =Sar.
In addition, we need the kinematierelation l mg

T =rY
and the equation

SQ = k:L'
for the xestoring force in the spring. Solving yields the differential
equation for harmonic oscillations:

i 2k 2mg
X = .
M+ 2m~ M+ 2m

Thus, the natural frequency is

2k
w ="y ——.
M + 2m
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Example 5.13 Two drums rotate in opposite directions as shown/in
Fig. 5.32. They support a homogeneous board of weight W-. (mass
m). The coefficient of kinetic

friction between the drums —x

and the board is p. "

Show that the 'boar.d - ' — '
dergoes a harmonic vibrati- # I* N
on and determine the natural /I
frequency. e

Fig. 5.32

Solution We separate the various parts ofithe system.“The! free-
body diagram shows the forces acting if the-board is displaced by
an amount x (the friction forces act on the-drums in the opposite
directions of the rotations).

Thus, the equation of motion:in the z-direction of the board is
given by

me.:Rngl.

The normal forces.follow from“force‘equilibrium in the vertical
direction and from moment_equilibrium:

a a
=tz - -
Ny = W2 , No=W .
a a
With thedaw of kinetic friction R = p/N, we obtain
2z

Rg.—Ry = (N2 = N1) = —Hmg — .

E5.13
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The equation of motion - @
. 2z . b\
mi = —umg —
pmg = (%9)

thus leads to the differential equation for harmonic wibr tiorﬂ;@

2 w=0. @ (DG

The natural frequency is given by

iy T
: Q
Note that the natural frequency doe@mpend on the angular

velocity €2 of the drums. (b'\

N

O o
O O
¢

€

Q
5 &
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Example 5.14 A homogeneous bar (weight W = mg, length 1) is
submerged in a viscous fluid and undergoes vibrations about peint
A (Fig. 5.33). The drag force Fy acting
on every point of the bar is proportio-
nal to the local velocity (proportiona-
lity factor 3).

a) Derive the equation of motion.

Assume small amplitudes and neglect
the buoyancy. b) Calculate the value
B = B* for critical damping.

Solution a) We consider an arbitrary
element of length dz of the bar. It is
subjected to the drag force

dFy = pv(z)de = Brpda .

We restrict ourselves to small amplitu-
des (singp ~ ¢). In this case the prin-
ciple of angular momentum yields

1
N N l 2.
A @Agaz—mg?p—/ﬂz pdr
0

Evaluation of the integral and introduction of. O4 = mi?/3 lead
to the equation of motion

. Bl 3g ; .

@+E¢+§7<p=0 = <p+2§<p+w290=0
where

gzﬂ w2:3_g.

2my 21

E5.14
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Example 5.15 The pendulum of a clock consists of a homogenéous E5.15
rod (mass m, length [) and a homoge-

-,

S~

neous disk (mass M, radius r) whose
center is located at a distance a from
point A (Fig. 5.34). Assume small am-

plitudes and determine the natural fre- o

~

a
quency of the corresponding oscillati- l
ons. Choose m = M and r < a and v /Q} o
calculate the ratio a/l which yields the M T

maximum eigenfrequency. - .

Solution We introduce the angle ¢
as shown and apply the principle A
of angular momentum:

N
A: Oup=—mgl/2sinp — Mgasinp

mg

where

O4 =mi*/3 4+ M(r? +2a%) /2"
If we assume small amplitudes (sin ¢ & ¢), we can linearize the
equation of motion:

(ml+2Ma)g
* 20 4 b=

Hence, the eigenfrequency is obtained as

(ml+2Ma)g
204 ’

In the special case of m = M and r < a the natural frequency
simplifies %o

— 3l + 6a
“Nar el

The ratio a/l which,yields the maximum eigenfrequency is found
by setting the derivative dw/da equal to zero:

dw 1 7
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Example 5.16 The system in Fig 5.35
consists of a homogeneous pulley
(mass M, radius ), a block (mass m)
and a spring (spring constant k).

Determine the equation of motion
for the block and its solution for the
initial conditions z(0) = 0, v(0) = vp.
Neglect the mass of the string and
any lateral motion.

Fig.5.35
Solution We separate the pulley and
the block and measure the displace-
ments x of the block and z 4 of point A
from the position of equilibrium. With . I @ 1 e,
this choice, we do not have to consider "4
the weights Mg and mg in the free-
body diagram. Thus, the equations of

. S1
motion are
o J{: mix = —S51 4 @I‘l_| II

S

O J: Mip=8 45 —kxy,

)
A @A(‘b:TSl_TSQ.

‘. ’
If we use the kinematic relations (II=: W
instantaneous center of rotation, see z
the figure)

X
TA 9 ) ry x TA 2 ) ¥ o0

and © 4 =Mr?/2we can solve the equations of motion for z and
obtain
k k
4m 424 s+
e \4mt g




@
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eneral solution of this differential equation is given by @

V0]

The

) = Acoswt + Bsinwt .

+

T

onditions

o

The

N/
T ey
= bO Q
Y 0\ s

s A\OfmJ M\ @Mm«\.\@ @m\
N Ne, 10,
L4 YPRES,
[ I .MJ@
ONE Qy

9
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Example 5.17 A wheel (mass m, radius r) rolls without slipping
on a circular path (Fig. 5.36). The mass of the rod (length+l) can
be neglected; the joints are
frictionless. l g /\
Derive the equation of
motion and determine the AR AR RS RN
natural frequency of small
oscillations.

Solution We apply conserva-
tion of energy

T +V = const

to derive the equation of mo-
tion. The kinetic energy of
the rolling wheel is given by
(see the figure)

T =mv?/2 + 0cy?/2,
the potential energy is (zero-level'at the height”of point A)
V = —mglcosy .

With the mass moment of inertia O =nr?/2 and the kinematic
relations

ve =1, v =) L lgb:m/}

the kinetic energy can be written as
T = 3mi?p? /44

Introduction inte the expression for conservation of energy gives
31p? /4 — gcosp = const .

Differentiation yields

3 2
Slpg+gesing =0 - ¢+3—~Cl’sin<p:0.



If we restrict ourselves to small amplitudes

Thus, the natural frequency is obtained as

S|~
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E5.18 Example 5.18 The simple pendulum in Fig. 5.37 is attached to a

spring (spring constant k) and a dashpot (damping coefficient d).

a) Determine the maximum value of
the damping coefficient d so that
the system undergoes vibrations.
Assume small amplitudes.

b) Find the damping ratio ¢ so that
the amplitude is reduced to 1/10
of its initial value after 10 full cy-
cles. Calculate the corresponding
period T,.

Solution a) The equation of motion

follows from the principle of angular
momentum (rotation about point. A;
small amplitudes: sin ¢ = @, cosgp 2.1):

A
A Oap=—Fya— Fi2ad —mg2ap~

With

04 =m(2a)?, EFy=dagp, F, = ka0

we obtain
d k

G+ o+ (or D )pmih o BF AP+ =0,
4m m’ . 2a

where
d 5 (k g

6_8m’ w _m+2a'
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In order to have oscillations, the system must be underdamped:

(<1l = €f<w —

2
— d<8/km+ L
2a

b) The necessary damping ratio follows with x,, 110 = x,/10/from
the logarithmic decrement:

2n¢ Iy _%n

= 1n
V1-¢2 Tp410

1

< k+g
&m m  2a

10 =1n10

In10
This leads to the period
21 21 2am
Ty=———=r—=2 —_—
Lo w T\ 2aktgm
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Example 5.19 The structure in Fig. 5.38 consists of an elasti¢ beam
(flexural rigidity FI, axial rigidity EA — oo, negligible mass) and
three rigid bars (with negligible masses). The block (mass m) is
suspended from a spring (spring constant k).

Determine the eigenfrequency of the vertical oscillations.of
the block.

‘4— a —»‘4— a —»‘4— a 4‘

==
OIS

=5
Fig=5.38

Solution We reduce the structure to an
equivalent system of a spring (spring g
constant k*, see the figure) and a mass.
To this end we first replace the “beam
and the bars by a spring with the spring k
constant kg. We can determine kg if we
subject the beam to a force F'which acts
at the free end. This.force produces the m
deflection
_F ad

YT Er
(see Engineering Mechanics 2: Mechanics of Materials, Example
6.22). The spring constant is obtained from

kB = — — kB = —3 -

W a

The displacement of the block is the sum of the elongations of the
springs with spring constants k and kp. Therefore, the beam /bars
and‘the, given spring act as springs in series. Thus, the spring
constant k* of the equivalent system follows from

1oL L kBl
k* kg k ka3 + EI

This yields the eigenfrequency

o KEI
YTV Y= (ka® + EIm
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Example 5.20 A rod (length [, with negligible mass) is elastically
supported at point A (Fig. 5.39). The rotational spring «(spring
constant kr) is unstretched for ¢ = 0. The rod carries a point
mass m at its free end. 4

Derive the equation of motion. kr
Determine the spring constant so 7 5 lg
that ¢ = /6 is an equilibrium posi-
tion. Calculate the natural frequen-
cy of small oscillations about this
equilibrium position.
Solution To derive the equation of
motion we apply the principle of an-
gular momentum:

~
A: Oap=mglcosp — My . ‘mg

With the mass moment of inertia

©4 = mi? and the restoring moment M, ="kg¢ welobtain

5= 9 s T
¥ ] ¥ mlg‘P-

Since ¢ = ¢y = 7/6 is-a position of equilibrium, the conditi-
on ¢(m/6) = 0 leads to-the required-spring constant (note that

cos(m/6) = v/3/2):
\/gg 7 kr 33
l

o1 om0 k=l

Now we considerssmall osgcillations/about this position of equili-
brium. We assume-/that

© =@+ P with || < 1.

Introduction into the/equation of motion yields

Fr
ml?

We (use the trigonometric relation

=L aos(po #4) — —75 (0o + 1)

€08 (o4 a)) /= cos pp cos ) — sin g sin ¢

—  cos(po + 1) = ?cosw - %sin;b

E5.20
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1~ 1,8in = 1) to obtain

ize (cos
lg
21

and linear

V3g m kr

kr

2 1 6mi?

ml




Example 5.21 A single story frame
consists of two rigid columns (with
negligible masses), a rigid beam of
mass m and a spring-dashpot sys-
tem as shown in Fig. 5.40. The
ground is forced to vibration by an
earthquake; the acceleration ip =
bocos Ut is known from measure-
ments.

Determine the maximum ampli-
tude of the steady state vibrations.

5 Vibrations

153

Fig. 5.40

Assume that the system is underdamped ‘@and that the vibrations

have small amplitudes.

Solution We assume that the

amplitudes of the vibrations ——=

are small. Then the elongati-
on of the diagonal is obtained

r —UR

‘

45°

N
R

as
2
A= £(:c —ug) .
2
The elongation produces~the
force
F=kA+dA

in the spring-dashpot system(see the figure). The equation of

motion of the beam-is given.by

2
—: miz——Fg

d
— mfi‘+—(i'*’l:LE)+§(1'*uE):0.

2

AL,

%

A

Thus, the relative displacement y = x — ug is described by

d k
mip 5y’+ §y:mb0coth

1, 2C .
= —2y+—§y+y:yocosﬂt,
w w

- 2m bo

E5.21
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Q

of small damping (( < 1) we o

bo [fm?
d\ %

—9v2 22

Yo
2¢

~
~

=Y Vinaa

<t

The maximum amplitude A is obtained for 7

nance!). In the case
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Example 5.22 The undamped system in Fig. 5.41 consists of a E5.22
block (mass m = 4 kg) and a spring (spring constant«k =_1

N/m). The block is subjected to a force F'(t). The initial conditions (

2(0) =z =1 m, £(0) = 0 and the response

t%OT) it T)O} ]

to the excitation are given. Here, A
to=1s,T=5sand (t-T)"=0 /
for t < T and (t —=T)° = 1 for J—WW— " m |—>
t>T. N ©)
Calculate the force F(t). WA UITVYY

t
x(t) = o |cos —— +20 ( 1 — cos
20

Figs5.41

Solution First we calculate the force F for t < T. Then (t—T)° =0

and the response is given by
(t) L
x(t) = xg cos .
2" 9%

The unknown force follows from the equation-of motion:

F=m%+kx.
With
ro . ¢t d % t
=——sin— and I =,—-5c0S—
2t 2t 4¢3 2to
we obtain
mxg t
F( ) = (4—1% +k1‘0> COST0 .

Inserting the given numerical values of the parameters leads to

F(t)=0 /for t<T.
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Now we consider the case t > T. Then (t — T) = 1. and the
response follows as

t t—-T
x(t) = xo {0052—150 + 20 (1 — cos o )}

¢ t—T
o a=29 | _gin—— +20sin
2to 2to 2t

.. o t t—"1
= — |- — +20 .
X 4t3 { COS 2t0 COS 2t0 }

Introduction into the equation of motion yields

mxo t
Fit)=(——= +k —
(t) ( 172 + x0> cos T
20 —
( 47:‘2360 - 20kx0> cos 1 20k,
0 0

— F@{)=20N for t>TW

20— ------~[7

10 —
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Example 5.23 A simplified model of a car (mass m) is given by
a spring-mass system (Fig. 5.42). The car drives with censtant
velocity vg over an uneven surface in the form of a sine function
(amplitude Uy, wavelength L).
a) Derive the equation of moti-

on and determine the forcing

-/ m
frequency Q. /*q to
b) Find the amplitude of the ver- | ¢ m

tical vibrations as a function

of the velocity vyp. | T |

c¢) Calculate the critical velocity
Fig. 5.42
v. (resonance!).

Solution a) We denote the verti-
cal displacement of the car by z, -~ m
the uneven surface is described %l

by u. Then Newton’s law reads !

T omi=—k(z—u).

With the position of the car, s.= 0 I |
vot, in the horizontal direction o

we obtain } | } }

2mvot

2
u:Uocos%:Uocos =Uy cos Qt~

Thus,

2
mI+kx = kUycosQt with Q= 7TLUO

b) We assume the solution of the equation of motion to be of
the form of the right-hand side: x = xg cos Qt. This leads to the
amplitude of-the steady state vibrations:

Uy Uo
Tro = =
0 . 02 , 47203 m
w? L2 k

where w? = k/m.
c) Resonance occurs for 2 = w:
2,2
dmév?
7.2

m
?:1 — UC

E5.23
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Example 5.24 A homogeneous wheel (mass m) is attached(to &
spring (spring constant k). The
wheel rolls without slipping on
a rough surface which moves k @
according to the function u =

upcosQt (Fig. 5.43). |
a) Determine the amplitude of

the steady state vibrations. Fig. 543
b) Calculate the coefficient pg of static friction which is necessary

to prevent slipping.

Solution The equations of mo-
tion for the wheel are given by

t 0 0=N-mg., ()
—: mi=—-kax+H, (b)

m .
C : Ocp=-rH. (c)

With the kinematic relation
T=u+rp — o= i+ rg—="—up Q* cos Qt + rp

and ©¢ = mr?/2 we obtain from (b) and (c) the differential equa-
tion for forced vibrations:

1
4= — = —=uy 0% cosQt .
m 3

a) We assumeé-the solution to be of the form of the right-hand
side: x = xg cos Qt. This leads.to theramplitude of the steady state
vibrations:

| |7_u07
3m Q2

b).The condition |H|mqes < po N for static friction and (a), (b)
yieldthe required coefficient of static friction:

SC+—SC ‘1‘092+—1'0
1o > |H|m¢l1 — m mar __
TN g g
— Ho = w® | mQ2

Sg 2 k

3mQ2
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Example 5.25 A small homogeneous disk (mass m, radius r) is at:
tached to a large homogeneous disk (mass M, radius R) as.shown
in Fig. 5.44. The torsion spring
(spring constant kr) is unstret- g l
ched in the position shown.

Determine the eigenfrequency
of the oscillations. Assume small
amplitudes.

Fig. 5.44

Solution We apply the principle
of angular momentum to derive
the equation of motion:

ﬂ .. .
A: Ouxp=—krp—mgasing .

In the case of small amplitudes

(sin ¢ & ¢) this equation reduces

to
k
G+ wio=0 with MQZM.
O4
Inserting the mass moment of‘inertia
MR2 2
0a=""+ [% +ma2]

we can write the eigenfrequency in‘the form

kr +mga

w = 1 7"2
Larn2 2
\ 2MR +m(2 +a“)

Note that the problem can also be solved with the aid of the
conservation' of energy.(we choose V' =0 for ¢ = 0):

1 1
T+ V =.const /= 5@,4952 + 3 kr* + mga(1 — cos ) = const.

Differentiation yields
Oupp + ko +mgasing ¢ =0.

With sin ¢ & ¢ and ¢ # 0 we obtain the same result as above.

E5.25
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Example 5.26 The systems [J P
and O in Fig. 5.45 consist of

= EI EI
two beams (negligible masses, 0 ®
flexural rigidity ET), a spring m
(spring constant k) and a box e 20 — 0 =
mass m). EI Bl
(ass m) &

Determine the spring con- élk
m

RN

stants k* of the equivalent
springs for the two systems.

Solution We reduce both sys-

tems to the equivalent sim- 1Bl
ple systems of a mass and a =
spring.

In system [J, the three “springs” are.attached to the'mass. The-
refore, they undergo the same deflection whenthe box is displaced:
they act as springs in parallel. The equivalent spring constant k*
is the sum of the individual spring constants:

k= ki
We obtain the spring constants ki and kr of the right and the

left beam, respectively, if we subject the cantilevers to a force 1
at their free ends. The corresponding deflections are

_1p
Y= 3BT

(see Engineering Mechanics 2: Mechanics of Materials, Section
4.5) which leadsto
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Thus,

27 EI 27ET + 8ka3
— k="
8 a3 8a3

k*:kL+kR+k:

m m

161

Now we consider system [. Here, theitwo beams act as springs
in parallel with equivalent spring constant k. This then. acts in

series with given spring (spring constant k)=Hence,

e by b= 2L
1 1,1 8 1
T h k WEI Tk
. 2TETk 27TET
o R R sk s 5 o BL

Note that the stiffness of(system [ ‘is.smaller than the one of

system [0. Therefore it vibrates“with.a smaller frequency.
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E5.27 Example 5.27 A homogeneous wheel (mass m, moment of inertia
©¢, radius r) rolls without slipping on a rough beam (mass M ).
The beam moves without m,O¢
friction on roller supports Z . CC/;

(Fig. 5.46). 7
Determine the natural fre- | oIyY e |
quency of the system. e AL
Fig. 5:46
Solution We separate the wheel
and the beam and introduce the
coordinates x1, x2 and ¢ (see
T
the figure). The coordinates are Rty
measured from the position of mg
equilibrium. Then the equati- -
ons of motion are i
H =
O = mI = —kxy — Hy *
Ny
m ..
C : Ocp=rH, T *—»H
= ]
O —: Miys=H" At ©) TB

If we use the kinematic relation

$1:1'2+Tg0 - i‘1:$'2+7"¢ - $1:1'2+T(p

and solve for x; we obtain

. k
x1 + i SC1:O.

™ 1+MT2/@C

Thus, the/matural frequency is given by

k
M

\ " T Mr/ec
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E6.5 Example 6.5 Point A Of the simple LA SIS A A A,
pendulum (mass m, length [) in

Fig. 6.8 moves with a constant ac-
celeration ag to the right.
Derive the equation of motion.

Fig.6.8

Solution We introduce the &, n-co-
ordinate system as shown in the fi-

gure. It is a translating coordinate e,
system with point A as the origin. .4
The equation of motion in the mo-

ving system is

ma, = F + Fy .
The (real) force F' acting at the

mass is given by
W =mg

F = —Ssinpes + (S cosg —mg)e,
and the fictitious force Fy, is
F; = —may; = —mapeg .

Note that the Coriolis force is.zero since w = 0.
The components-of the relative acceleration a, follow from the
coordinates of the'point mass in the.moving system through dif-

ferentiation:
& = lsin @, n = —1lcosy,
f':lgbcosgo, 7 = lpsin g,

E=lpcosp “l@%sinp, ij=I1@sing + 1P cosp.
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This yields the relative acceleration
a,=Ee;+ iie, = (I cosp — lp? sinp)eg
+(Ipsing +1p* cos p)ey, .

Introduction into the equation of motion leads to the components
of the equation of motion in the direction of the axes £ and 7

m (Ip cos p — lp? sinp) = —S'sinp — mag ,

m (I@sin p + 1p? cos ) = S cos p — myg.

These are two equations for the unknowns @ and S. Solving for ¢
yields the equation of motion

o+ gsingp +agcosp =0.

Note that the position ¢y = — arctanap/g is ebtained for ¢ = 0.
The pendulum oscillates about this-position. for'¢ #£0:
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Example 6.6 The two disks in .
Fig. 6.9 rotate with constant
angular velocities Q and w
about their respective axes.

Determine the absolute ac-
celeration of point P at the in-
stant shown.

Solution We describe the mo-
tion of point P in a coordina-
te system x,y, z which is fixed
to the large disk. The absolute 2/ 5
acceleration of P is —

aP:af+ar+aca

where the acceleration of-the
reference frame and the.relati-

T
ve acceleration are given by
0 0
af=|—(a+rcosp)?| , " ar=_|=rw?cosyp
0 —rw?sin @

We also write'the angular.velocity of the reference frame and the
relative velocity as column vectors:

0 0
Q= 10|, u=|-rwsing
Q

TW COS Y
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tion:

clera

and we calculate the Coriolis acc

a. =

2 X v, —  ac

Combining yields

wn
o}
(]
(o]
3
~
-2
.&m.m
<]
mw,w
S on =
2m_
~
IT
S
_|__
Il
A,
3
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Example 6.7 A horizontal circular platform (radius r) rotatéswith
constant angular velocity Q (Fig. 6.10). A block (mass m).islocked
in a frictionless slot at a distance a
from the center of the platform. At
time ¢ = 0 the block is released.
Determine the velocity v, of the
block relative to the platform when
it reaches the rim of the platform.

Solution We describe the motion of y "
the block in a coordinate system x, y
which is fixed to the platform. The
absolute acceleration of the block is
given by
ap =af+ a, + ac.

Here, the acceleration of the reference frame, the. relative accele-
ration and the Coriolis acceleration are

»
a, = I aC 3

Thus, the absolute acceleration becomes

—z)?
0

0

a frd
! 20

i — Q%

2Qz

ap =

The equation of metion/for. the block is

maB:F,
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where the force F' (which is exerted from the slot on the block) is

0
F

Yy

(

L]
14

F =

We now write down the z-component of the equation'of motion:
m(E— Q%) =0 — i-Q%2=0.

The general solution of this differential equation.is given by
x(t) = Acosh Qt + Bsinh Qt .

With the initial conditions

z0)=a — A=a,
#(0)=0 — B=0

we obtain
x(t) = acosh Qt .

When the block reaches the rim.of the platform, the condition
x(tr)=r — coshQigr=1r/a

is satisfied. Thus the relative velogity is (note“that cosh®z —
sinh? z = 1)

z(tgr) = aQsinhQitgy —  2(tr) = QVr? —a?.
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Example 6.8 A simple pendulum is
attached to point 0 of a circular disk
(Fig. 6.11). The disk rotates with
a constant angular velocity (; the
pendulum oscillates in the horizon-

tal plane.
Determine the circular frequency
of the oscillations. Assume small %— 7
amplitudes and neglect the weight .
of the mass. Fig. 6.11

Solution We introduce a rotating &, n, (-ceordinate system. Then

Q= Qec, ag =79 = *TQQ(&’g ,

Q2=0, rop =lcospes +1lsinpe, .

The relative velocity can be ex-
pressed by the relative angularve-

locity ¢* (*: time derivative(rela-
tive to the moving frame):

v = lp* — v = —lpTsinp e +lp cospe, .

Thus, the fictitious forces F p.and F'. are
F; = —mayg —m x (Axrop) =m(rQ* + 197 cos p)es
+ mQ2lsin @ [

F. = - 2mQxv, =2mly* (et cosp + e, sinp) .
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With the tangential relative acceleration a,; = l¢p** the'equa-
tion of motion in the tangential direction is obtained as

e mle™ = m(I9% + 21p*Q) sin g cosp
— m[rQ? 4+ (192 + 21p*Q) cos ¢] sin ¢
= —mrQsingp. ? mO?sin ¢

We assume small amplitudes (Ut Mmlp* Qsitip

. o X
(sinp & ¢). This yields \ ml(rQ%+-192 cos )
m L
» rQ? " ) > 2mlp*Qcos p
0+ - ¢= 0.

Hence, the circular frequency of the oscillations is

w:\/r/lﬂ.
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E6.9 Example 6.9 A drum rotates with
angular velocity w about point B
(Fig. 6.12). Pin C is fixed to the
drum; it moves in the slot of link
AD.
Determine the angular velocity
wap of link AD and the velocity
v, of the pin relative to the link at
the instant shown.

iAo

Fig.6.12

Solution We use the rotating co-
ordinate system x,y as shown in c
44

the figure. The (absolute) velocity a

of pin C' is given by /
X
N
A |

vo = 3lw [ cosﬁ] .

—sin g

.,
1
1

With the geometrical relations |
a=+/161%2 + 912 = 5] ~Isins =3/5, cosB=4/5

we can write

31w[4]
Vo = — .

5 |3

The velocity of the reference frame at-point C and the velocity of
pin C relative to the moving frame are

we finally obtain

. 9 12
wAD:B:——w vT:—wl[ll.
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Example 6.10 A point P moves along a circular path (radiusr) E6.10
on a platform with a constant relative velocity v, (Fig. 6.13)."The
platform rotates with a con-
stant angular velocity w about
point A. The eccentricity e is gi-
ven.

Determine the relative, fixed
frame-, Coriolis, and absolute
accelerations of P.

Solution We introduce the coor-
dinate system &, 7, ¢ as shown in
the figure. Its origin is located at
the center 0 of the platform; it
rotates with the platform. Thus
point P undergoes a circular
motion relative to this system.
With the magnitude a, = v?/r
of the relative acceleration and

its direction (from P to 0).we

can write
2
vy .
a, = —— (eccosp +Hegqsing) .
r
With
w = wec , w=0, Top = €¢1-€0SY + e,rsin g ,
v, = Up(—eg singp + e, cosy)- Po)=ag = —ew’es
we obtain

ar = ap+ w X (w Xegp)
= —ew’es Hrw’les x (e¢ X egcosp) +ec x (e¢ X e, sin p)]

=~ (e + reosp)w’es — rw’ sin pe,,

2w xv, = 2wurlec X (—egsing) + e¢ X e, cos )

18
I

= —2wus(eccosp + e, singp) .
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eleration is found as

Thus, the absolute acc

af+ar+a'c
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Example 6.11 A circular ring (ra- E6.11
dius r) rotates with constant an-
gular velocity 2 about the z-
axis (Fig. 6.14). A point mass m
moves without friction inside the
ring.

Derive the equations of moti-
on and determine the equilibrium
positions of the point mass relati-
ve to the ring.

Fig 614

Solution We describe the motion of the point mass in the x,y, 2-
coordinate system (see the figure) which rotates with the-ring.
The absolute acceleration a of thewpoint mass is,given by

a=ay+ar+ac,

where the acceleration of the reference frame and the relative ac-
celeration are

0 —r? cos p — r@.sin @
ay = |—rQ%sinp| , @ = |<1p?sing +rdeosy
0 0

With the angular velocity of the ring and the relative velocity

Q —Tpsing
Q=10 ,. .= |r@cosy
0 0

we can calculate the/Coriolis acceleration

0
a. =20 X v = a. = 0

2rQp cos
The equation of motion is given by

ma=W + N ,
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where
—mg
W = 0
0

is the weight of the point mass and

N
N =N

Yy
N

with Ny /N, =tangp

is the force exerted from the ring on the point mass. Now, we can
write down the components of the equation of-motion:

—m(r$? cos p + r@sinp) = —mg+N, |

—m(r? sinp — ¢ cos p + Q% sin ) = N, tan ¢ |

2mrQdpcosp = N, .

Positions of equilibrium relative to the ring are characterized by
. . 2 g .
=0, ¢=0 = (TQ +—>smcp=0.
Cos
This yields
g

=0 ~ = 7 f+arccos — .
©1 ) ©2 ., $3,4 W I Q2

The positions g4 exist/onlyfor Q% > g/r.
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Example 6.12 A point P moves L E6.12
on a square plate along a cir- v,

cular path (radius r) with a P (
constant relative velocity wv,. &y

The plate moves horizontally ]
with the constant acceleration
ao (Fig. 6.15).

Determine the magnitude of Z
the absolute acceleration of P. Fig. 6.15

Solution The components of the
relative velocity in the moving
reference frame &, 7 are

Y L
Ve =& = —vpsing, fixed

xT

Uppy = N* = v COS

(*: time derivative relative to the moving frame). Differentiation
with respect to the moving frame leads to(the components of the
relative acceleration (note: rp* =w, ):

2
v
arg = &= 71}7“90* COS p = «77" COS, P,
s’k * ’U% .
ary =N = =0,  singp'= ——Lsinjp .
T

Since the reference frame undergoes a tramslation, the absolute
acceleration is given by
vy
Ay = Qg + Grg =ag"— — COS P,
7
ve
Ay = Grp§ K5 sin @

It has the magnitude

! )
a= /a3 +a}= a3+r—;f2ao fcosg&.
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Example 6.13 A crane starts to move from rest with a constant
acceleration by along a straight track. At the same time; the jib
begins to rotate with constant angu- by

lar velocity w, and the trolley on the
jib begins to move towards point 0
with constant relative acceleration b,
(Fig. 6.16). The initial positions of the

jib and of the trolley are given by @0 =S
and sg.

Determine the absolute velocity and % e
the absolute acceleration of the trolley _‘%/

as functions of the time ¢.

Fig.6.16

Solution We use the fixed coordinate system «,y, z, where the
z-axis coincides with the track. In ad-

dition, we introduce the rotating coor- n B £
dinate system &, 7, ¢, where the €-axis \/J Top —
rotates with the jib. Then, the gene- l . /

ral equations for the absolute velocity = ¢ x
and the absolute acceleration are

o

V=v) +WwW X Typ U,
a=ay +wxrypF+wx(wXryp)+2w xXw, +a,.
We measure the time ¢ from. the beginning of the motion. Then,

making use of the given accelerations, angular velocity and initial
conditions, we ebtain

ag = bpe, — Vo= bot €,

w=wec,| w =0

a, =—be: —"v,=-ble — Typ= (f%bct2 + so)ee,
and
W XTop =w(=3bt>+ s0)ey 2w x v, =2wbte,,

WX (W xrgp) = —w? (—2bet? + so)eg .
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With the relation e, = e¢ cos ¢ — e, sin, where ¢ = o +w @
finally obtain b\

L 4
v = [bot cos ¢ — betlee + [—bot sinp + w(—2bct? + so)ké\,

a = [by cos ¢ — w?(—3bct? + so) — beleg — [bo Sm{yMtb\.&
~ O
§% QA
.
LoD
K NS Q
NS
g O
O X A
o O &
) é?)
TN
5
< O
ﬁ,g’
5 S
S
> ¥






