Paper Submission

Authors are encouraged to submit high-quality, original work that has neither appeared in, nor is under consideration by, other journals.

Springer offers authors, editors and reviewers of Real-Time Systems a web-enabled online manuscript submission and review system. Our online system offers authors the ability to track the review process of their manuscript.

Submit manuscripts to: http://www.edmgr.com/time.

Article Type:
Special Issue: Mixed-Criticality RT Scheduling

Instructions for Authors:
http://www.springer.com/11241

www.springer.com/11241

Special issue on Mixed-Criticality Real-time Scheduling

Guest editors:
Prof. Alan Burns, The University of York, burns@cs.york.ac.uk
Prof. Sanjoy Baruah, The University of North Carolina, baruah@cs.unc.edu

Scope

There is an increasing trend in safety-critical systems towards implementations that support multiple functionalities, often of different degrees of importance (or criticalities), upon a shared platform. Such mixed-criticality implementations are essential to make more efficient use of platform resources; however, care must be taken in such implementations to prevent failures of non-critical components from affecting the behavior of critical components. Ensuring both correctness and resource-efficiency in such mixed-criticality systems requires the development of fundamentally new perspectives on the modeling of these systems, and of different approaches to resource allocation and scheduling; we solicit papers describing current research on such novel perspectives and approaches.

Topics of interest include (but are not limited to)

- **New models** for representing mixed-criticality systems
 - different aspects of a workload may be viewed differently at different criticality levels --examples include worst-case execution time estimates of pieces of code, and frequencies of external events to which a real-time system must react

- **Run-time algorithms and environments** for the correct and resource-efficient implementation of systems so modeled
 - upon different platform types: single-core, multicore, and distributed
 - upon special-purpose hardware specifically designed to provide support to mixed-criticality workloads

- **Novel techniques** for the analysis of such systems

Important Dates:
Submission deadline: August 15th, 2014