Kapitel 84: Myeloproliferative Syndrome


Arellano-Rodrigo E, Alvarez-Larrán A, Carlos Reverter J et al. (2006) Increased platelet and leucocyte activation as contributing mechanism for thrombosis in essential thrombocythemia and correlation with the JAK2 mutational status. Haematologica 91: 169–175


Balan KK, Critchley M (1997) Outcome of 259 patients with primary proliferative polycythaemia (PPP) and idiopathic thrombocythaemia (IT) treated in a regional nuclear medicine department with phosphorus 32 - a 15 year review. British Journal of Radiology 70: 1169–73


Campbell PJ, Grieshammer M, Döhner K et al. (2006) V617F mutation in JAK2 is associated with poorer survival in idiopathic myelofibrosis. Blood 107: 2098–2100


Chen J, Deangelo DJ, Kutok JL et al. (2004) PKC412 inhibits the zinc finger 198–fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorder. Proceedings of the National Academy of Sciences USA 101: 14479–14484


Elliot MA, Hanson CA, Dewald GW et al. (2005) WHO-defined chronic neutrophilic leukemia: a long-term analysis of 12 cases and a critical review of the literature. Leukemia 19: 313‒317
Harrison CN, Gale RE, Machin SJ et al. (1999) A large proportion of patients with a diagnosis of essential thrombocythemia do not have a clonal disorder and may be at lower risk of thrombotic complications. Blood 93: 417‒424


Steensma DP, Dewald GW, Lasho TL et al. (2005) The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and myelodysplastic syndromes. Blood 106: 1207–1209


Thiele J, Kvasnicka HM, Diehl V et al. (1999) Clinicopathological diagnosis and differential criteria of thrombocythemia in various myeloproliferative disorders by histopathology, histochemistry and immunostaining from bone marrow biopsies. Leukemia and Lymphoma 33: 207–218


Xu M, Bruno E, Chao J et al. (2005) Constitutive mobilization of CD34– cells into the peripheral blood in idiopathic myelofibrosis may be due to the action of a number of proteases. Blood 105: 4508–4515

